Document Number:321323-001Intel® Xeon® Processor 5500 SeriesThermal/Mechanical Design GuideMarch 2009
Introduction10 Thermal/Mechanical Design Guide1.1 ReferencesMaterial and concepts available in the following documents may be beneficial when reading
Thermal/Mechanical Design Guide 11Introduction§TCONTROLTCONTROL is a static value below TCC activation used as a trigger point for fan speed control.
Introduction12 Thermal/Mechanical Design Guide
Thermal/Mechanical Design Guide 13LGA1366 Socket2 LGA1366 SocketThis chapter describes a surface mount, LGA (Land Grid Array) socket intended for proc
LGA1366 Socket14 Thermal/Mechanical Design GuideFigure 2-2. LGA1366 Socket Contact Numbering (Top View of Socket) 31 29 27 25 23 21 19 1
Thermal/Mechanical Design Guide 15LGA1366 Socket2.1 Board LayoutThe land pattern for the LGA1366 socket is 40 mils X 40 mils (X by Y), and the pad siz
LGA1366 Socket16 Thermal/Mechanical Design Guide2.2 Attachment to MotherboardThe socket is attached to the motherboard by 1366 solder balls. There are
Thermal/Mechanical Design Guide 17LGA1366 SocketThe co-planarity (profile) and true position requirements are defined in Appendix C.2.3.3 ContactsBase
LGA1366 Socket18 Thermal/Mechanical Design Guide2.4 Package Installation / RemovalAs indicated in Figure 2-6, access is provided to facilitate manual
Thermal/Mechanical Design Guide 19LGA1366 Socket2.5 DurabilityThe socket must withstand 30 cycles of processor insertion and removal. The max chain co
2 Thermal/Mechanical Design GuideINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOP
LGA1366 Socket20 Thermal/Mechanical Design Guide2.9 LGA1366 Socket NCTF Solder JointsIntel has defined selected solder joints of the socket as non-cri
Thermal/Mechanical Design Guide 21Independent Loading Mechanism (ILM)3 Independent Loading Mechanism (ILM)The Independent Loading Mechanism (ILM) prov
Independent Loading Mechanism (ILM)22 Thermal/Mechanical Design Guide3.1.2 ILM Back Plate Design OverviewThe unified back plate for 2-socket server an
Thermal/Mechanical Design Guide 23Independent Loading Mechanism (ILM)3.2 Assembly of ILM to a MotherboardThe ILM design allows a bottoms up assembly o
Independent Loading Mechanism (ILM)24 Thermal/Mechanical Design Guide.Figure 3-3. ILM AssemblyStep 1: With socket body reflowed on board, and back pla
Thermal/Mechanical Design Guide 25Independent Loading Mechanism (ILM)As indicated in Figure 3-4, socket protrusion and ILM key features prevent 180-de
Independent Loading Mechanism (ILM)26 Thermal/Mechanical Design Guide
Thermal/Mechanical Design Guide 27LGA1366 Socket and ILM Electrical, Mechanical, and Environmental Specifications4 LGA1366 Socket and ILM Electrical,
LGA1366 Socket and ILM Electrical, Mechanical, and Environmental Specifications28 Thermal/Mechanical Design Guide4.4 Loading SpecificationsThe socket
Thermal/Mechanical Design Guide 29LGA1366 Socket and ILM Electrical, Mechanical, and Environmental Specifications4.6 Environmental RequirementsDesign,
Thermal/Mechanical Design Guide 3Contents1Introduction...
LGA1366 Socket and ILM Electrical, Mechanical, and Environmental Specifications30 Thermal/Mechanical Design GuideA detailed description of this method
Thermal/Mechanical Design Guide 31Thermal Solutions5 Thermal SolutionsThis section describes a 1U reference heatsink, design targets for 2U and Tower
Thermal Solutions32 Thermal/Mechanical Design GuideFor 1U reference heatsink, see Appendix B for detailed drawings. Table 5-1 specifies ΨCA and pressu
Thermal/Mechanical Design Guide 33Thermal Solutions5.1.1 25.5 mm Tall HeatsinkFor the 25.5 mm tall heatsink, Table 5-2 provides guidance regarding per
Thermal Solutions34 Thermal/Mechanical Design Guide5.2 Heat Pipe ConsiderationsFigure 5-2 shows the orientation and position of the TTV die. The TTV d
Thermal/Mechanical Design Guide 35Thermal Solutions5.3 AssemblyThe assembly process for the 1U reference heatsink begins with application of Honeywell
Thermal Solutions36 Thermal/Mechanical Design Guide5.3.1 Thermal Interface Material (TIM)TIM should be verified to be within its recommended shelf lif
Thermal/Mechanical Design Guide 37Thermal Solutions5.5.2 Dual Thermal ProfileProcessors that offer dual thermal profile are specified in the appropria
Thermal Solutions38 Thermal/Mechanical Design GuideCompliance to Profile A ensures that no measurable performance loss will occur due to TCC activatio
Thermal/Mechanical Design Guide 39Thermal Solutions5.6.1 Fan Speed ControlThere are many ways to implement fan speed control. Using processor ambient
4 Thermal/Mechanical Design Guide6 Quality and Reliability Requirements ...436.1
Thermal Solutions40 Thermal/Mechanical Design Guide5.6.2 PECI Averaging and Catastrophic Thermal ManagementBy averaging DTS over PECI, thermal solutio
Thermal/Mechanical Design Guide 41Thermal Solutionscompliance by ensuring that the processor Tcase value, as measured on the TTV, does not exceed Tcas
Thermal Solutions42 Thermal/Mechanical Design Guide
Thermal/Mechanical Design Guide 43Quality and Reliability Requirements6 Quality and Reliability Requirements6.1 Test ConditionsThe Test Conditions pro
Quality and Reliability Requirements44 Thermal/Mechanical Design Guide8) Thermal PerformanceUsing 1U heatsink and 1U airflow from Table 5-1:1) TTV @ 9
Thermal/Mechanical Design Guide 45Quality and Reliability Requirements6.2 Intel Reference Component ValidationIntel tests reference components both in
Quality and Reliability Requirements46 Thermal/Mechanical Design Guide2. Heatsink remains seated and its bottom remains mated flat against the IHS sur
Thermal/Mechanical Design Guide 47Component SuppliersA Component SuppliersVarious suppliers have developed support components for processors in the In
Component Suppliers48 Thermal/Mechanical Design GuideA.1.3 Alternative Thermal SolutionThe alternative thermal solutions are preliminary and are not v
Thermal/Mechanical Design Guide 49Component SuppliersA.1.4 Socket and ILM ComponentsThe LGA1366 Socket and ILM Components are described in Chapter 2 a
Thermal/Mechanical Design Guide 5B-7 1U Reference Heatsink Fin and Base (Sheet 1 of 2) ...58B-8 1U
Component Suppliers50 Thermal/Mechanical Design Guide
Thermal/Mechanical Design Guide 51Mechanical DrawingsB Mechanical DrawingsTable B-1. Mechanical Drawing ListDescription FigureBoard Keepin / Keepout Z
Mechanical Drawings52 Thermal/Mechanical Design GuideFigure B-1. Board Keepin / Keepout Zones (Sheet 1 of 4)1345678BCDA12345678BCDA2200 MISSION COLLE
Thermal/Mechanical Design Guide 53Mechanical DrawingsFigure B-2. Board Keepin / Keepout Zones (Sheet 2 of 4)1345678BCDA12345678BCDA2200 MISSION COLLE
Mechanical Drawings54 Thermal/Mechanical Design GuideFigure B-3. Board Keepin / Keepout Zones (Sheet 3 of 4)1345678BCDA12345678BCDA2200 MISSION COLLE
Thermal/Mechanical Design Guide 55Mechanical DrawingsFigure B-4. Board Keepin / Keepout Zones (Sheet 4 of 4)1345678BCDA12345678BCDA2200 MISSION COLLE
Mechanical Drawings56 Thermal/Mechanical Design GuideFigure B-5. 1U Reference Heatsink Assembly (Sheet 1 of 2)
Thermal/Mechanical Design Guide 57Mechanical DrawingsFigure B-6. 1U Reference Heatsink Assembly (Sheet 2 of 2)
Mechanical Drawings58 Thermal/Mechanical Design GuideFigure B-7. 1U Reference Heatsink Fin and Base (Sheet 1 of 2)
Thermal/Mechanical Design Guide 59Mechanical DrawingsFigure B-8. 1U Reference Heatsink Fin and Base (Sheet 2 of 2)
6 Thermal/Mechanical Design GuideTables1-1 Reference Documents ...
Mechanical Drawings60 Thermal/Mechanical Design GuideFigure B-9. Heatsink Shoulder Screw (1U, 2U and Tower)1345678BCDA12345678BCDAAAD89880 1 03DWG. N
Thermal/Mechanical Design Guide 61Mechanical DrawingsFigure B-10. Heatsink Compression Spring (1U, 2U and Tower)
Mechanical Drawings62 Thermal/Mechanical Design GuideFigure B-11. Heatsink Retaining Ring (1U, 2U and Tower)
Thermal/Mechanical Design Guide 63Mechanical DrawingsFigure B-12. Heatsink Load Cup (1U, 2U and Tower)
Mechanical Drawings64 Thermal/Mechanical Design GuideFigure B-13. 2U Collaborative Heatsink Assembly (Sheet 1 of 2)
Thermal/Mechanical Design Guide 65Mechanical DrawingsFigure B-14. 2U Collaborative Heatsink Assembly (Sheet 2 of 2)
Mechanical Drawings66 Thermal/Mechanical Design GuideFigure B-15. 2U Collaborative Heatsink Volumetric (Sheet 1 of 2)
Thermal/Mechanical Design Guide 67Mechanical DrawingsFigure B-16. 2U Collaborative Heatsink Volumetric (Sheet 2 of 2)
Mechanical Drawings68 Thermal/Mechanical Design GuideFigure B-17. Tower Collaborative Heatsink Assembly (Sheet 1 of 2)
Thermal/Mechanical Design Guide 69Mechanical DrawingsFigure B-18. Tower Collaborative Heatsink Assembly (Sheet 2 of 2)
Thermal/Mechanical Design Guide 7Revision History§Document Number Revision Number Description Revision Date321323 001 Public Release March 2009
Mechanical Drawings70 Thermal/Mechanical Design GuideFigure B-19. Tower Collaborative Heatsink Volumetric (Sheet 1 of 2)
Thermal/Mechanical Design Guide 71Mechanical DrawingsFigure B-20. Tower Collaborative Heatsink Volumetric (Sheet 2 of 2)
Mechanical Drawings72 Thermal/Mechanical Design GuideFigure B-21. 1U Reference Heatsink Assembly with TIM (Sheet 1 of 2)1345678BCDA12345678BCDA2200 MI
Thermal/Mechanical Design Guide 73Mechanical DrawingsFigure B-22. 1U Reference Heatsink Assembly with TIM (Sheet 2 of 2)1345678BCDA12345678BCDA2200 MI
Mechanical Drawings74 Thermal/Mechanical Design GuideFigure B-23. 2U Reference Heatsink Assembly with TIM (Sheet 1 of 2)1345678BCDA12345678BCDA2200 MI
Thermal/Mechanical Design Guide 75Mechanical DrawingsFigure B-24. 2U Reference Heatsink Assembly with TIM (Sheet 2 of 2)1345678BCDA12345678BCDA2200 MI
Mechanical Drawings76 Thermal/Mechanical Design GuideFigure B-25. Tower Reference Heatsink Assembly with TIM (Sheet 1 of 2)1345678BCDA12345678BCDA2200
Thermal/Mechanical Design Guide 77Mechanical Drawings§Figure B-26. Tower Reference Heatsink Assembly with TIM (Sheet 2 of 2)1345678BCDA12345678BCDA220
Mechanical Drawings78 Thermal/Mechanical Design Guide
Thermal/Mechanical Design Guide 79Socket Mechanical DrawingsC Socket Mechanical DrawingsTable C-1 lists the mechanical drawings included in this appen
8 Thermal/Mechanical Design Guide
Socket Mechanical Drawings80 Thermal/Mechanical Design GuideFigure C-1. Socket Mechanical Drawing (Sheet 1 of 4)
Thermal/Mechanical Design Guide 81Socket Mechanical DrawingsFigure C-2. Socket Mechanical Drawing (Sheet 2 of 4)
Socket Mechanical Drawings82 Thermal/Mechanical Design GuideFigure C-3. Socket Mechanical Drawing (Sheet 3 of 4)
Thermal/Mechanical Design Guide 83Socket Mechanical Drawings§Figure C-4. Socket Mechanical Drawing (Sheet 4 of 4)
Socket Mechanical Drawings84 Thermal/Mechanical Design Guide
Thermal/Mechanical Design Guide 85Heatsink Load MetrologyD Heatsink Load MetrologyTo ensure compliance to max socket loading value listed in Table 4-3
Heatsink Load Metrology86 Thermal/Mechanical Design Guide§Figure D-1. Intel® Xeon® Processor 5500 Series Load Cell Fixture
Thermal/Mechanical Design Guide 87Embedded Thermal SolutionsE Embedded Thermal SolutionsThis section describes the LV processors and Embedded referenc
Embedded Thermal Solutions88 Thermal/Mechanical Design GuideDetailed drawings for the ATCA reference heatsink can be found in Section E.3. Table E-1 a
Thermal/Mechanical Design Guide 89Embedded Thermal SolutionsNotes:1.) The thermal specifications shown in this graph are for reference only. See the I
Thermal/Mechanical Design Guide 9Introduction1 IntroductionThis document provides guidelines for the design of thermal and mechanical solutions for 2-
Embedded Thermal Solutions90 Thermal/Mechanical Design GuideNotes: Thermal sample only, retention not production ready. Notes: Heat sink should be opt
Thermal/Mechanical Design Guide 91Embedded Thermal Solutions§Figure E-5. UP ATCA Heat Sink Drawing
Embedded Thermal Solutions92 Thermal/Mechanical Design GuideE.3 Mechanical Drawings and Supplier InformationSee Appendix B for retention and keep out
Thermal/Mechanical Design Guide 93Embedded Thermal Solutions§Figure E-6. ATCA Reference Heat Sink Assembly (Sheet 1 of 2)
Embedded Thermal Solutions94 Thermal/Mechanical Design Guide§Figure E-7. ATCA Reference Heat Sink Assembly (Sheet 2 of 2)
Thermal/Mechanical Design Guide 95Embedded Thermal Solutions§Figure E-8. ATCA Reference Heatsink Fin and Base (Sheet 1 of 2)
Embedded Thermal Solutions96 Thermal/Mechanical Design Guide§§Figure E-9. ATCA Reference Heatsink Fin and Base (Sheet 2 of 2)
Thermal/Mechanical Design Guide 97Processor Installation ToolF Processor Installation ToolThe following optional tool is designed to provide mechanica
Processor Installation Tool98 Thermal/Mechanical Design Guide§Figure F-1. Processor Installation Tool
Comentarios a estos manuales